dbt: Metrics Filter Dimensions: Practical Guide

🎯 The Problem

In dbt’s semantic layer, you have complex metrics with multiple filter conditions:

-- Complex metric with numerous filters
SELECT 
  SUM(revenue) as total_revenue
FROM sales
WHERE 
  region IN ('EU', 'NA')
  AND product_category = 'Premium'
  AND customer_segment = 'Enterprise'
  AND order_status = 'Completed'
  AND order_date >= '2024-01-01'

Challenges:

  • ❌ Slow queries on large volumes
  • ❌ Repeated filters across multiple metrics
  • ❌ Scattered and hard-to-maintain filtering logic
  • ❌ No reuse of frequent calculations

✅ Solution: Filter Dimensions with Selective Materialization

Key Concept

Separate filtering logic from metric definitions by creating pre-calculated filter dimensions for frequent combinations.

🛠️ Complete Implementation

Step 1: Identify Filtering Patterns

# Frequent filter analysis
filters_analysis:
  high_frequency: # >100 queries/day
    - region + product_category
    - customer_segment + order_status
    - region + customer_segment + product_category
  
  medium_frequency: # 10-100 queries/day  
    - product_category + order_status
    - region + order_date_range
    
  ad_hoc: # <10 queries/day
    - custom_combinations

Step 2: Create Materialized Filter Dimensions

-- models/dimensions/dim_sales_filter_combinations.sql

-- ✅ Apply optimal strategy based on usage frequency
{% set strategy = get_optimal_filter_strategy('dim_sales_filter_combinations', 'high') %}

{{ config(
  materialized=strategy.materialization,
  indexes=strategy.indexing and [
    {'columns': ['region', 'product_category', 'customer_segment'], 'unique': false},
    {'columns': ['is_premium_enterprise'], 'unique': false},
    {'columns': ['filter_combination_key'], 'unique': true}
  ] or [],
  cluster_by=strategy.clustering or ['region', 'product_category']
) }}

WITH sales_base AS (
  SELECT DISTINCT
    region,
    product_category, 
    customer_segment,
    order_status,
    DATE_TRUNC('month', order_date) as order_month
  FROM {{ ref('fact_sales') }}
  WHERE order_date >= '2020-01-01'
),

filter_combinations AS (
  SELECT
    region,
    product_category,
    customer_segment,
    order_status,
    order_month,
    
    -- Pre-calculate frequent combinations
    CASE 
      WHEN region IN ('EU', 'NA') 
       AND product_category = 'Premium'
       AND customer_segment = 'Enterprise'
      THEN TRUE 
      ELSE FALSE 
    END as is_premium_enterprise,
    
    CASE
      WHEN region IN ('EU', 'NA')
       AND product_category IN ('Premium', 'Standard')
      THEN TRUE
      ELSE FALSE
    END as is_target_market,
    
    CASE
      WHEN customer_segment = 'Enterprise'
       AND order_status = 'Completed'
      THEN TRUE
      ELSE FALSE  
    END as is_completed_enterprise,
    
    -- Hash combinations for fast joins
    {{ dbt_utils.generate_surrogate_key([
      'region', 'product_category', 'customer_segment', 'order_status'
    ]) }} as filter_combination_key

  FROM sales_base
)

SELECT * FROM filter_combinations

Step 3: Define Metrics with Filter Dimensions

# models/metrics/schema.yml
version: 2

metrics:
  - name: revenue_premium_enterprise
    label: "Revenue Premium Enterprise"
    model: ref('fact_sales')
    description: "Revenue from Premium products sold to Enterprise customers in EU/NA"
    
    calculation_method: sum
    expression: revenue
    
    # ✅ Use pre-calculated filter dimension
    filters:
      - field: filter_combination_key
        operator: 'in'
        value: "{{ get_filter_keys('is_premium_enterprise', true) }}"
    
    dimensions:
      - region
      - product_category  
      - customer_segment
      
  - name: revenue_target_market
    label: "Revenue Target Market"
    model: ref('fact_sales')
    description: "Revenue from target market segments"
    
    calculation_method: sum
    expression: revenue
    
    # ✅ Different pre-calculated combination
    filters:
      - field: filter_combination_key  
        operator: 'in'
        value: "{{ get_filter_keys('is_target_market', true) }}"
        
  - name: revenue_flexible
    label: "Revenue with Dynamic Filters"
    model: ref('fact_sales') 
    description: "Revenue with ad-hoc filtering capability"
    
    calculation_method: sum
    expression: revenue
    
    # ✅ Keep flexibility for rare filters
    # No pre-filtering, allows all dynamic filters

Step 4: Utility Macros

-- macros/filter_helpers.sql

{% macro get_filter_keys(filter_name, filter_value) %}
  {% set query %}
    SELECT filter_combination_key
    FROM {{ ref('dim_sales_filter_combinations') }}
    WHERE {{ filter_name }} = {{ filter_value }}
  {% endset %}
  
  {% set results = run_query(query) %}
  {% set keys = [] %}
  
  {% if results %}
    {% for row in results %}
      {% set _ = keys.append("'" + row[0] + "'") %}
    {% endfor %}
  {% endif %}
  
  {{ return('(' + keys|join(',') + ')') }}
{% endmacro %}

{% macro create_dynamic_filter(base_filters={}, dynamic_filters={}) %}
  {% set all_filters = base_filters %}
  
  {% for key, value in dynamic_filters.items() %}
    {% if value is not none %}
      {% set _ = all_filters.update({key: value}) %}
    {% endif %}
  {% endfor %}
  
  {% set filter_conditions = [] %}
  {% for field, condition in all_filters.items() %}
    {% set _ = filter_conditions.append(field + ' ' + condition) %}
  {% endfor %}
  
  {{ return(' AND '.join(filter_conditions)) }}
{% endmacro %}

Step 5: Optimized Fact Model

-- models/facts/fact_sales_with_filters.sql

-- ✅ Apply strategy based on expected usage
{% set strategy = get_optimal_filter_strategy('fact_sales_with_filters', 'high') %}

{{ config(
  materialized='incremental',
  unique_key='sale_id',
  cluster_by=strategy.clustering or ['order_date', 'region'],
  indexes=strategy.indexing and [
    {'columns': ['filter_combination_key'], 'unique': false},
    {'columns': ['is_premium_enterprise', 'is_target_market'], 'unique': false}
  ] or []
) }}

SELECT
  s.sale_id,
  s.customer_id,
  s.product_id, 
  s.order_date,
  s.revenue,
  s.quantity,
  
  -- ✅ Join with filter dimensions
  f.filter_combination_key,
  f.is_premium_enterprise,
  f.is_target_market,
  f.is_completed_enterprise,
  
  -- Dimensions for drill-down
  s.region,
  s.product_category,
  s.customer_segment,
  s.order_status

FROM {{ ref('stg_sales') }} s
LEFT JOIN {{ ref('dim_sales_filter_combinations') }} f
  ON s.region = f.region
  AND s.product_category = f.product_category  
  AND s.customer_segment = f.customer_segment
  AND s.order_status = f.order_status
  AND DATE_TRUNC('month', s.order_date) = f.order_month

{% if is_incremental() %}
  WHERE s.updated_at > (SELECT MAX(updated_at) FROM {{ this }})
{% endif %}

📊 Usage Examples

Optimized Query (Frequent Filter)

-- ✅ Uses pre-calculated filter dimension
SELECT 
  region,
  SUM(revenue) as total_revenue
FROM {{ ref('fact_sales_with_filters') }}
WHERE is_premium_enterprise = TRUE  -- ← Indexed + pre-calculated
GROUP BY region

-- Performance: ~50ms instead of 2s

Flexible Query (Ad-hoc Filter)

-- ✅ Keeps flexibility for rare cases
SELECT
  product_category,
  SUM(revenue) as total_revenue  
FROM {{ ref('fact_sales_with_filters') }}
WHERE region = 'APAC'  -- ← Non-pre-calculated filter
  AND customer_segment IN ('SMB', 'Mid-Market')
  AND order_date >= '2024-06-01'
GROUP BY product_category

-- Performance: acceptable because rare usage

🎯 Advanced Configuration

Intelligent Materialization by Frequency

# dbt_project.yml
models:
  metrics_project:
    dimensions:
      filter_combinations:
        # ✅ Use get_optimal_filter_strategy results
        high_frequency:
          +materialized: "{{ get_optimal_filter_strategy('high_freq_filters', 'high').materialization }}"
          +indexes: "{{ get_optimal_filter_strategy('high_freq_filters', 'high').indexing }}"
        
        medium_frequency:
          +materialized: "{{ get_optimal_filter_strategy('med_freq_filters', 'medium').materialization }}"
          
        low_frequency:
          +materialized: "{{ get_optimal_filter_strategy('low_freq_filters', 'low').materialization }}"

# ✅ Vars used by get_optimal_filter_strategy  
vars:
  filter_strategy_config:
    performance_thresholds:
      high_frequency_queries_per_day: 100
      medium_frequency_queries_per_day: 10
      low_frequency_queries_per_day: 1
    
    optimization_levels:
      high:
        target_response_time_ms: 100
        max_staleness_hours: 1
      medium:
        target_response_time_ms: 500  
        max_staleness_hours: 4
      low:
        target_response_time_ms: 2000
        max_staleness_hours: 24

Dynamic Filter Configuration

-- macros/adaptive_filtering.sql
{% macro get_optimal_filter_strategy(metric_name, expected_frequency='medium') %}
  
  {% set strategies = {
    'high': {
      'use_filter_dimension': true,
      'materialization': 'table',
      'indexing': true
    },
    'medium': {
      'use_filter_dimension': true, 
      'materialization': 'materialized_view',
      'indexing': false
    },
    'low': {
      'use_filter_dimension': false,
      'materialization': 'view', 
      'indexing': false
    }
  } %}
  
  {{ return(strategies[expected_frequency]) }}
{% endmacro %}

📈 Monitoring and Optimization

Filter Performance Dashboard

-- models/monitoring/filter_performance_metrics.sql
WITH query_performance AS (
  SELECT
    metric_name,
    filter_type,
    avg_execution_time_ms,
    query_frequency_per_day,
    uses_filter_dimension,
    
    CASE
      WHEN uses_filter_dimension = true THEN avg_execution_time_ms
      ELSE avg_execution_time_ms * 0.1  -- Estimated improvement
    END as optimized_time_ms
    
  FROM {{ ref('query_performance_log') }}
  WHERE query_date >= CURRENT_DATE - 30
),

optimization_opportunities AS (
  SELECT
    metric_name,
    filter_type,
    query_frequency_per_day,
    avg_execution_time_ms,
    optimized_time_ms,
    (avg_execution_time_ms - optimized_time_ms) * query_frequency_per_day as daily_time_saved_ms,
    
    CASE
      WHEN query_frequency_per_day > 100 AND NOT uses_filter_dimension 
      THEN 'HIGH_PRIORITY'
      WHEN query_frequency_per_day > 50 AND NOT uses_filter_dimension
      THEN 'MEDIUM_PRIORITY'  
      ELSE 'LOW_PRIORITY'
    END as optimization_priority
    
  FROM query_performance
)

SELECT
  optimization_priority,
  COUNT(*) as metrics_count,
  SUM(daily_time_saved_ms) / 1000 as daily_seconds_saved,
  AVG(query_frequency_per_day) as avg_daily_queries
FROM optimization_opportunities
GROUP BY optimization_priority
ORDER BY 
  CASE optimization_priority
    WHEN 'HIGH_PRIORITY' THEN 1
    WHEN 'MEDIUM_PRIORITY' THEN 2  
    ELSE 3
  END

Performance Validation with Strategy Monitoring

-- models/monitoring/strategy_performance_validation.sql

-- ✅ Monitor if applied strategies are meeting performance expectations
WITH strategy_metrics AS (
  SELECT
    model_name,
    strategy_applied,
    expected_frequency,
    target_response_time_ms,
    actual_avg_response_time_ms,
    actual_queries_per_day,
    
    -- Performance validation
    CASE
      WHEN actual_avg_response_time_ms <= target_response_time_ms THEN 'MEETING_SLA'
      WHEN actual_avg_response_time_ms <= target_response_time_ms * 1.5 THEN 'CLOSE_TO_SLA'
      ELSE 'MISSING_SLA'
    END as performance_status,
    
    -- Usage validation  
    CASE
      WHEN expected_frequency = 'high' AND actual_queries_per_day >= 100 THEN 'USAGE_MATCHES'
      WHEN expected_frequency = 'medium' AND actual_queries_per_day BETWEEN 10 AND 100 THEN 'USAGE_MATCHES'
      WHEN expected_frequency = 'low' AND actual_queries_per_day < 10 THEN 'USAGE_MATCHES'
      ELSE 'USAGE_MISMATCH'
    END as usage_validation
    
  FROM {{ ref('model_performance_tracking') }}
  WHERE measurement_date >= CURRENT_DATE - 30
),

strategy_recommendations AS (
  SELECT 
    model_name,
    strategy_applied as current_strategy,
    performance_status,
    usage_validation,
    
    -- Recommend strategy adjustments
    CASE
      WHEN usage_validation = 'USAGE_MISMATCH' AND actual_queries_per_day > 100 
           AND current_strategy != 'high' THEN 'UPGRADE_TO_HIGH'
      WHEN usage_validation = 'USAGE_MISMATCH' AND actual_queries_per_day < 10 
           AND current_strategy != 'low' THEN 'DOWNGRADE_TO_LOW'
      WHEN performance_status = 'MISSING_SLA' 
           AND current_strategy != 'high' THEN 'UPGRADE_FOR_PERFORMANCE'
      WHEN performance_status = 'MEETING_SLA' 
           AND current_strategy = 'high' 
           AND actual_queries_per_day < 50 THEN 'CONSIDER_DOWNGRADE'
      ELSE 'OPTIMAL'
    END as recommended_action,
    
    -- Next strategy to apply
    CASE
      WHEN recommended_action LIKE '%HIGH%' THEN 'high'
      WHEN recommended_action LIKE '%LOW%' THEN 'low'
      ELSE 'medium'
    END as recommended_strategy
    
  FROM strategy_metrics
)

SELECT
  model_name,
  current_strategy,
  performance_status,
  usage_validation,
  recommended_action,
  recommended_strategy,
  
  -- Action priority
  CASE recommended_action
    WHEN 'UPGRADE_FOR_PERFORMANCE' THEN '🔴 HIGH - Performance Issue'
    WHEN 'UPGRADE_TO_HIGH' THEN '🟡 MEDIUM - Usage Increased'
    WHEN 'CONSIDER_DOWNGRADE' THEN '🟢 LOW - Over-optimized'
    ELSE '✅ No Action Needed'
  END as priority_level

FROM strategy_recommendations
ORDER BY 
  CASE recommended_action
    WHEN 'UPGRADE_FOR_PERFORMANCE' THEN 1
    WHEN 'UPGRADE_TO_HIGH' THEN 2
    WHEN 'DOWNGRADE_TO_LOW' THEN 3
    WHEN 'CONSIDER_DOWNGRADE' THEN 4
    ELSE 5
  END

🚀 Advanced Use Cases

-- tests/test_filter_performance.sql
{% set performance_thresholds = {
  'revenue_premium_enterprise': 100,  -- ms
  'revenue_target_market': 150,
  'revenue_flexible': 500
} %}

{% for metric, threshold in performance_thresholds.items() %}
  
  WITH performance_check AS (
    SELECT 
      '{{ metric }}' as metric_name,
      {{ threshold }} as threshold_ms,
      avg_execution_time_ms,
      CASE 
        WHEN avg_execution_time_ms > {{ threshold }} THEN 'PERFORMANCE_DEGRADED'
        ELSE 'OK'
      END as status
    FROM {{ ref('query_performance_log') }}
    WHERE metric_name = '{{ metric }}'
      AND query_date >= CURRENT_DATE - 7
  )
  
  SELECT * FROM performance_check WHERE status = 'PERFORMANCE_DEGRADED'
  
  {% if not loop.last %}UNION ALL{% endif %}
{% endfor %}

🚀 Complete Implementation Example

Real-World Usage with Strategy Application

-- models/metrics/revenue_premium_enterprise.sql

-- ✅ Step 1: Determine optimal strategy based on expected usage
{% set strategy = get_optimal_filter_strategy('revenue_premium_enterprise', 'high') %}

{{ config(
  materialized=strategy.materialization,
  unique_key='sale_id',
  cluster_by=strategy.clustering or ['order_date', 'region'],
  indexes=strategy.indexing and [
    {'columns': ['is_premium_enterprise'], 'unique': false},
    {'columns': ['region', 'order_date'], 'unique': false}
  ] or [],
  
  # ✅ Refresh frequency based on strategy
  on_schema_change=strategy.get('schema_change_policy', 'append_new_columns'),
  
  # ✅ Metadata for monitoring
  meta={
    'strategy_applied': strategy,
    'expected_queries_per_day': 150,
    'target_response_time_ms': strategy.get('target_response_time_ms', 100)
  }
) }}

-- ✅ Step 2: Apply conditional logic based on strategy
{% if strategy.use_filter_dimension %}

  -- High-performance version with pre-calculated filters
  SELECT 
    region,
    DATE_TRUNC('month', order_date) as order_month,
    SUM(revenue) as total_revenue,
    COUNT(*) as order_count,
    AVG(revenue) as avg_order_value,
    CURRENT_TIMESTAMP as last_updated
  FROM {{ ref('fact_sales_with_filters') }}
  WHERE is_premium_enterprise = TRUE  -- ✅ Pre-calculated boolean filter
  GROUP BY region, DATE_TRUNC('month', order_date)

{% else %}

  -- Simplified version for low-frequency metrics
  SELECT 
    region,
    DATE_TRUNC('month', order_date) as order_month, 
    SUM(revenue) as total_revenue,
    COUNT(*) as order_count,
    AVG(revenue) as avg_order_value,
    CURRENT_TIMESTAMP as last_updated
  FROM {{ ref('fact_sales') }}
  WHERE region IN ('EU', 'NA')
    AND customer_segment = 'Enterprise'
    AND product_tier = 'Premium'
    AND order_status = 'Completed'  -- ✅ Direct filters for rare usage
  GROUP BY region, DATE_TRUNC('month', order_date)

{% endif %}

-- ✅ Step 3: Add strategy-based post-hooks
{{ config(
  post_hook=strategy.get('post_hooks', [
    "ANALYZE {{ this }}",  -- Update table statistics
    "{{ log_performance_metrics(this.identifier, strategy) }}"
  ])
) }}

Multi-Metric Implementation with Different Strategies

-- models/metrics/customer_analytics_suite.sql

-- ✅ Different strategies for different metrics based on usage patterns
{% set daily_revenue_strategy = get_optimal_filter_strategy('daily_revenue', 'high') %}
{% set customer_segmentation_strategy = get_optimal_filter_strategy('customer_segmentation', 'medium') %}
{% set product_performance_strategy = get_optimal_filter_strategy('product_performance', 'low') %}

WITH 
-- High-frequency metric: Optimized with filter dimensions
daily_revenue AS (
  {% if daily_revenue_strategy.use_filter_dimension %}
    SELECT 
      DATE(order_date) as revenue_date,
      SUM(revenue) as daily_revenue,
      COUNT(DISTINCT customer_id) as unique_customers
    FROM {{ ref('fact_sales_with_filters') }}
    WHERE is_premium_enterprise = TRUE
    GROUP BY DATE(order_date)
  {% else %}
    -- Fallback for unexpected low usage
    SELECT 
      DATE(order_date) as revenue_date,
      SUM(revenue) as daily_revenue,
      COUNT(DISTINCT customer_id) as unique_customers
    FROM {{ ref('fact_sales') }}
    WHERE region IN ('EU', 'NA') AND customer_segment = 'Enterprise'
    GROUP BY DATE(order_date)
  {% endif %}
),

-- Medium-frequency metric: Balanced approach
customer_segments AS (
  {% if customer_segmentation_strategy.use_filter_dimension %}
    SELECT 
      customer_segment,
      is_completed_enterprise,
      COUNT(*) as customer_count,
      AVG(revenue) as avg_customer_revenue
    FROM {{ ref('fact_sales_with_filters') }}
    GROUP BY customer_segment, is_completed_enterprise
  {% else %}
    SELECT 
      customer_segment,
      order_status = 'Completed' as is_completed_enterprise,
      COUNT(*) as customer_count,
      AVG(revenue) as avg_customer_revenue
    FROM {{ ref('fact_sales') }}
    WHERE customer_segment = 'Enterprise'
    GROUP BY customer_segment, (order_status = 'Completed')
  {% endif %}
),

-- Low-frequency metric: Simple approach
product_performance AS (
  -- Always use simple approach for low-frequency metrics
  SELECT 
    product_category,
    COUNT(*) as total_sales,
    SUM(revenue) as total_revenue
  FROM {{ ref('fact_sales') }}
  WHERE order_date >= CURRENT_DATE - INTERVAL 90 DAY
  GROUP BY product_category
)

-- Combine all metrics
SELECT 
  dr.revenue_date,
  dr.daily_revenue,
  dr.unique_customers,
  cs.customer_count,
  cs.avg_customer_revenue,
  pp.total_sales as product_sales_90d
FROM daily_revenue dr
CROSS JOIN customer_segments cs
CROSS JOIN product_performance pp

Strategy-Based Model Selection Macro

-- macros/strategic_model_builder.sql
{% macro build_metric_with_strategy(metric_name, base_query, filters, expected_frequency) %}
  
  {% set strategy = get_optimal_filter_strategy(metric_name, expected_frequency) %}
  
  {{ config(
    materialized=strategy.materialization,
    indexes=strategy.indexing and [
      {'columns': ['filter_combination_key'], 'unique': false}
    ] or [],
    cluster_by=strategy.clustering,
    meta={'optimization_strategy': strategy}
  ) }}
  
  {% if strategy.use_filter_dimension %}
    -- Use optimized filter dimensions
    {{ base_query }}
    FROM {{ ref('fact_sales_with_filters') }}
    WHERE {{ filters.optimized }}
  {% else %}
    -- Use direct filtering  
    {{ base_query }}
    FROM {{ ref('fact_sales') }}
    WHERE {{ filters.direct }}
  {% endif %}
  
{% endmacro %}

-- Usage example:
{{ build_metric_with_strategy(
  'revenue_analysis',
  'SELECT region, SUM(revenue) as total_revenue',
  {
    'optimized': 'is_premium_enterprise = TRUE',
    'direct': 'region IN (\'EU\', \'NA\') AND customer_segment = \'Enterprise\''
  },
  'high'
) }}

E-commerce: Customer Segmentation Filters

-- Filter dimension for e-commerce
WITH customer_segments AS (
  SELECT DISTINCT
    region,
    customer_tier,
    product_category,
    purchase_channel,
    
    -- Pre-calculated business segments
    CASE
      WHEN customer_tier = 'VIP' 
       AND region IN ('North America', 'Europe')
       AND product_category = 'Premium'
      THEN TRUE ELSE FALSE
    END as is_vip_premium,
    
    CASE  
      WHEN purchase_channel = 'Online'
       AND customer_tier IN ('Gold', 'Platinum')
      THEN TRUE ELSE FALSE
    END as is_digital_premium,
    
    -- Hash for optimized joins
    {{ dbt_utils.generate_surrogate_key([
      'region', 'customer_tier', 'product_category', 'purchase_channel'
    ]) }} as segment_key
    
  FROM {{ ref('dim_customers') }}
  CROSS JOIN {{ ref('dim_products') }}
  WHERE is_active = true
)

SELECT * FROM customer_segments

SaaS: Product Usage Filters

-- Filter dimension for SaaS metrics
WITH usage_segments AS (
  SELECT DISTINCT
    subscription_tier,
    user_role,
    feature_set,
    geographic_region,
    
    -- Pre-calculated adoption segments
    CASE
      WHEN subscription_tier = 'Enterprise'
       AND feature_set = 'Advanced' 
       AND user_role = 'Admin'
      THEN TRUE ELSE FALSE
    END as is_power_user,
    
    CASE
      WHEN subscription_tier IN ('Pro', 'Enterprise')
       AND geographic_region IN ('US', 'EU')
      THEN TRUE ELSE FALSE
    END as is_target_market,
    
    {{ dbt_utils.generate_surrogate_key([
      'subscription_tier', 'user_role', 'feature_set', 'geographic_region'  
    ]) }} as usage_segment_key
    
  FROM {{ ref('dim_subscriptions') }}
  CROSS JOIN {{ ref('dim_users') }}
  WHERE subscription_status = 'active'
)

SELECT * FROM usage_segments

💡 Best Practices

✅ Do’s

  1. Analyze patterns before implementing -- Identify most frequent filters SELECT filter_conditions, COUNT(*) as usage_count FROM query_log GROUP BY filter_conditions ORDER BY usage_count DESC
  2. Materialize by frequency
    • High frequency (>100/day) → table with indexes
    • Medium frequency (10-100/day) → materialized_view
    • Low frequency (<10/day) → view or dynamic filters
  3. Separate business logic # Keep business definitions in filter dimensions # Keep pure metrics in metric definitions
  4. Monitor performance -- Automatic tracking dashboard SELECT metric_name, avg_response_time, optimization_opportunity FROM filter_performance_dashboard

❌ Don’ts

  1. Over-materialize rare filters
  2. Duplicate filtering logic
  3. Forget indexes on filter dimensions
  4. Ignore performance monitoring

🎯 Summary

Filter Dimensions with Selective Materialization Strategy:

  • 🚀 Performance: Pre-calculates frequent filters
  • 🔄 Flexibility: Keeps dynamic filters for ad-hoc queries
  • 🛠️ Maintenance: Separates filtering logic from metrics
  • 📊 Scalability: Adapts to usage patterns

Result: Fast AND flexible metrics! 🎯

Leave a Reply

Your email address will not be published. Required fields are marked *